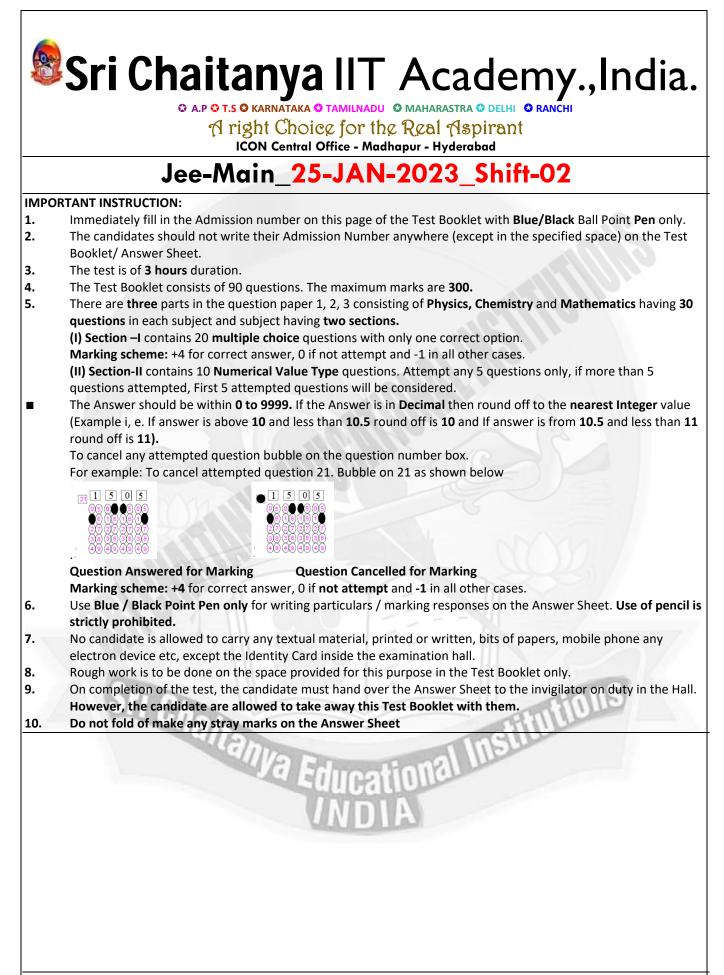


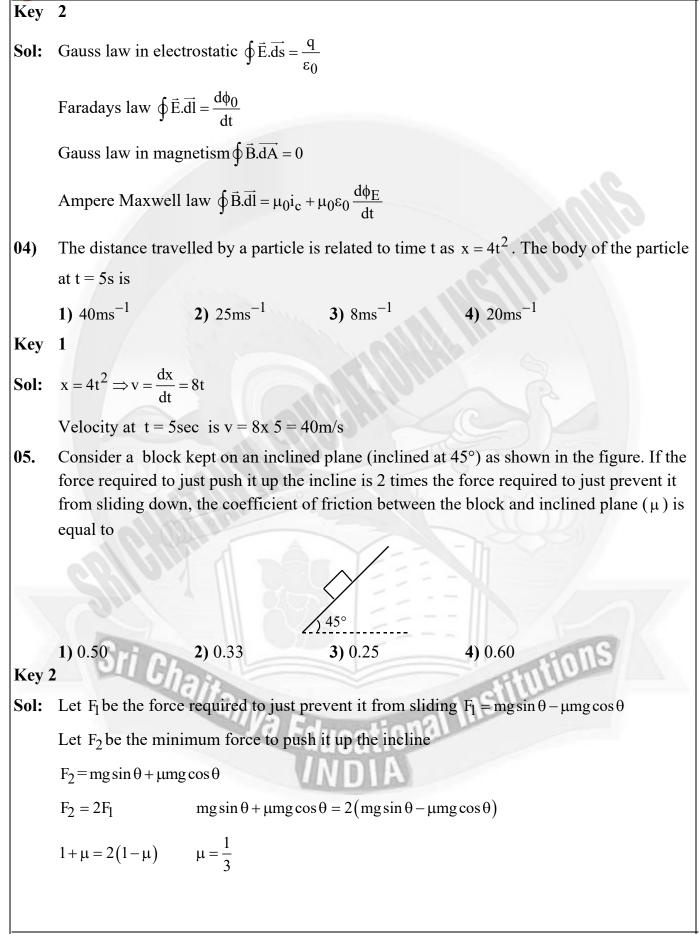
The BEST Results in India! Dominant! Unparalleled!

ALL INDIA RANKS IN JEE-ADVANCED 2022


D JOHN JOSEPH | H.T.NO: 6036441*

JEE MAIN (JAN) 2023 (25-01-2023-Session-2)

MATHEMATICS, PHYSICS & CHEMISTRY


040 66 15 15 15

srichaitanya.net

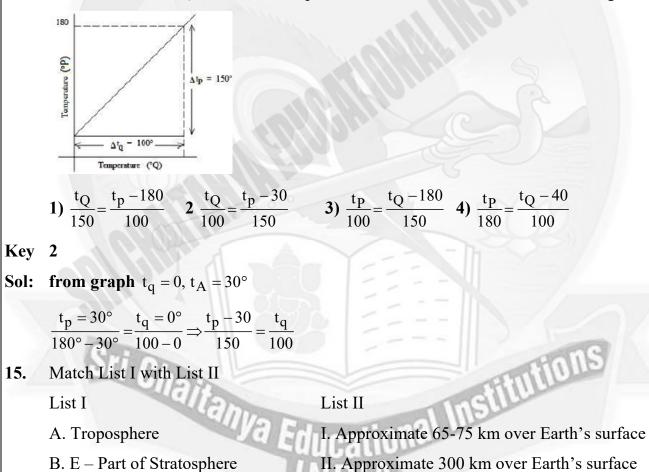
PHYSICS

(SINGLE CORRECT ANSWER TYPE) This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. Every planet revolves around the sun in an elliptical orbit 01. **A.** The force acting on a planet is inversely proportional to square of distance from sun **B.** Force acting on planet is inversely proportional to product of the masses of the planet and the sun **C.** The Centripetal force acting on the planet is directed away from the sun **D.** The square of time period of revolution of planet around sun is directly proportional to cube of semi – major axis of elliptical orbit 1) C and D Only 2) A and D only **3)** B and C only **4)** A and C only Key 2 Ans: $F = \frac{GmM}{r^2}$ Force acting on a planet is inversely proportional to square of distance from sun (Statement A) The Square of time period of revolution of planet around sun is directly proportional to cube of semif major axis of elliptical orbit (statement D) 02. A body of mass is taken from earth surface to the height h equal to twice the radius of earth (R_e), the increase in potential energy will be (g = acceleration due to gravity on the surface of Earth) **1)** $\frac{2}{3}$ mgR_e **2)** 3mgR_e **3)** $\frac{1}{3}$ mgR_e **4)** $\frac{1}{2}$ mgR_e Key $\frac{-\text{GmM}}{3\text{R}} - \left(\frac{-\text{GmM}}{\text{R}}\right) = \frac{2}{3}\frac{\text{GmM}}{\text{R}} \cdot \frac{\text{R}}{\text{R}} = \frac{2}{3}\text{mgR}$ Sol 03. Match List I with List II List II List I stitution d\phi_B A. Gauss's law in Electrostatics I. $\oint \vec{E} \cdot d\vec{L}$ II. $\oint \vec{B} \cdot \vec{dA} = 0$ B. Faraday' law III. $\oint \vec{B} \cdot \vec{dl} = \mu_0 i_c + \mu_0 \in_0 \frac{d\phi_E}{dt}$ C. Gauss's law in Magnetism IV. $\oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0}$ D. Ampere – Maxwell Law Choose the correct answer from the options given below 1. A - I, B - II, C - III, D - IV2) A - IV, B - I, C - II, D - III3) A - II, B - III, C - IV, D - I4) A - III, B - IV, C - I, D - IIJee Mains-2023_25th Jan_Shift-11 Page 2

<u> </u>	i Chaitanya IIT Academy, India	armonic motion hot	$Jee Mains-2023_25^{th} Jan_Shift-11$		
10.	A particle executes simple harmonic motion between $x = -A$ and $x = +A$. If time taken by				
		A/2 is 2s; then time ta	aken by particle in going from $x = A/2$ to		
	A is	3) 4 ₂			
Kow	1) 3s 2) 1)5s 3	3) 4s	4) 2s		
Key Sol:		Δr position to $\Lambda/2$ is	2 500		
501:	Time taken to move from n	ar position to A/2 is	2 800		
	$\frac{\pi}{6} - \frac{1}{\omega} = 2 \sec \omega$		d/m.		
	Time taken to move from A	/2 to A = $\frac{\pi}{3} \frac{1}{\omega} = 2 \left(\frac{\pi}{6} \right)^{1/2}$	$\left(\frac{1}{\omega}\right) = (2)(2) = 4$		
11.	Match List I with List II				
	List I	List II	List II		
	A. isothermal process	I. Work do	I. Work done by the gas decreases internal energy		
	B. Adiabatic process	II. No cha	II. No change in internal energy		
	C. Isochoric process	III. The he	III. The heat absorbed goes partly to increase		
		internal en	internal energy and partly to do work		
	D. Isobaric process IV. No work is done on or by the gas				
	Choose the correct answer from the options given below				
	1. A – I, B- II, C – IV, D -III 2) A – II, B-I, C – IV, D -III				
	3) A – II, B- II, C- III, D-IV	4) A – I, E	4) A – I, B – II, C- III, D - IV		
Key	2				
Sol:	A. In isothermal process, the temperature remains constant. So hence change in internal				
	energy is zero. (internal energy $d\theta = nCv\Delta T$ here($\Delta T = 0$)				
	B. In adiabatic process $Q = 0$ work done on it. And gas does work and temperature drops				
	so hence, decrease in internal energy				
	C. In iso-choric process, volume is constant. So hence work done by the gas (or) on the				
	gas equal to zero, we = $\int PdV \Rightarrow dV = 0 \Rightarrow w = 0$				
	D. In iso-baric process pressure is constant. So 1^{st} law of thermodynamics $d\theta = du + P \int dv$				
	-		,		

S r	i Chaitanya IIT Academy, India Jee Mains-2023_25 th Jan_Shift-11
12.	Statement I: When a Si sample is doped with Boron, it becomes P type and when doped
	by Arsenic it becomes N – type semiconductor such that P – type has excess holes and N –
	type has excess electrons
	Statement II: When such P – type and N – type semi conductors, are fused to make a
	junction a current will automatically flow which can be detected with an exactly
	connected ammeter.
	1) Both Statement I and Statement II are correct
	2) Both Statement I and Statement II are incorrect
	3) Statement I is correct but Statement II is incorrect
	4) Statement I is incorrect but statement II is correct
Key	1
Sol:	Statement I: Is correct and statement II is correct
	i) When silicon has four velancy electrons and boron has three valency electrons. So these
	three valency electrons bond with four electrons of silicon atom taken. This creates a hole
	(or) valency. As a result p – type semi – conductor formed
	ii) Where as arsenic has a penta valent, so dopping with silicons, they remains one free
	electrons. Thus n – type is formed
	iii) p – side has excess of holes and n – type excess of electrons in the outer shells of
	electrically neutral. This allows electric current pakes through the junction. Only in one
	direction
13.	Given below are two statements
	Statement I: Stopping potential in photoelectric effect does not depend on the power of
1	the light source
	Statement II: For a given metal, the maximum kinetic energy of the photoelectron
	depends on the wavelength of the incident light
	1)Both Statement I and Statement II are incorrect
	2) Statement I is incorrect but Statement II is correct
	3) Both Statement I and Statement II are correct
	4) Statement I is correct but Statement II is incorrect
Key	3
1	

Sol: Stopping potential is Depends on frequency of hight, Doesn't depends on intensity of light. So hence I = P/A and power p = I(A)


So hence power photo – electric effect doesn't depends on power of a digit source. St-I correct

The maximum kinetic energy of photo electrons is given by $KE = hv - \omega_0$ here v =

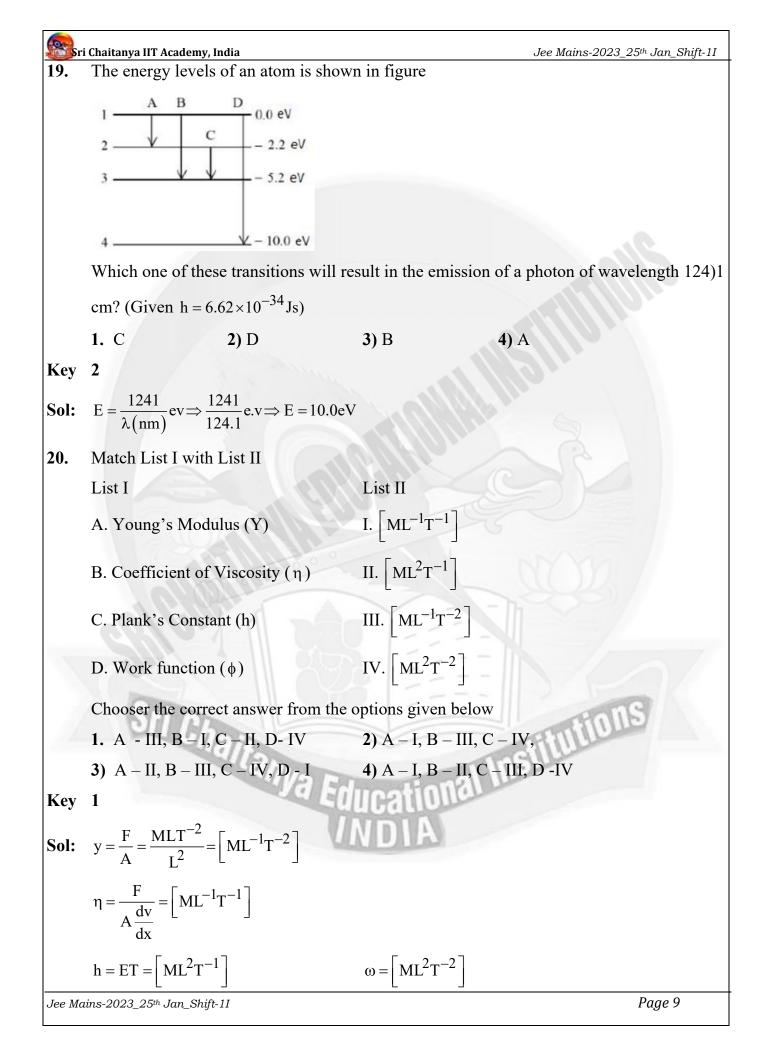
frequency of incident light radiation

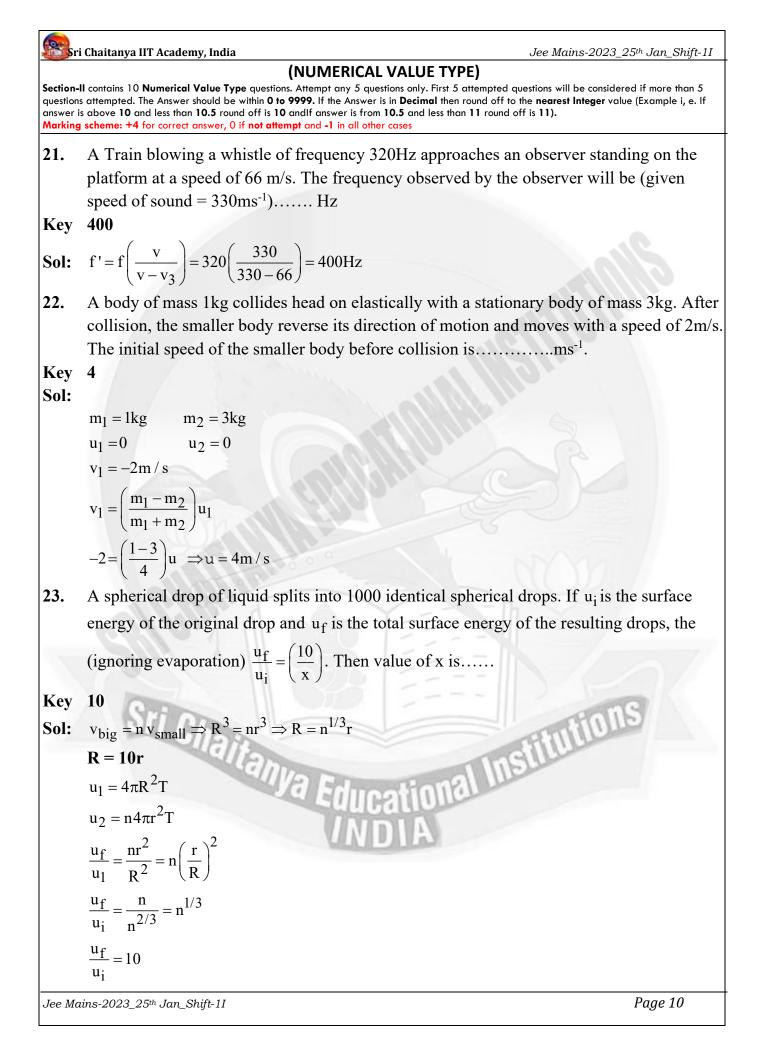
So kinetic energy depends on frequency and wave length

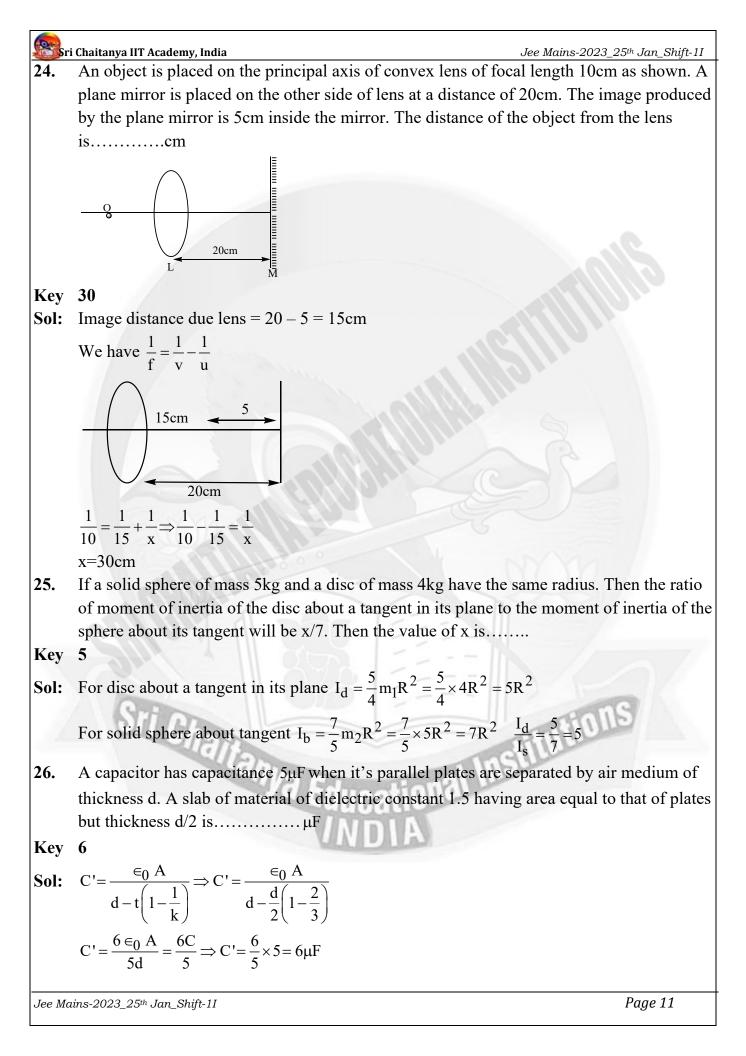
14. The graph between two temperature scales P and Q is shown in the figure. Between upper fixed point and lower fixed point there are 150 equal divisions of scale P and 100 divisions on scale Q. The relationship for conversion between the two scales is given by

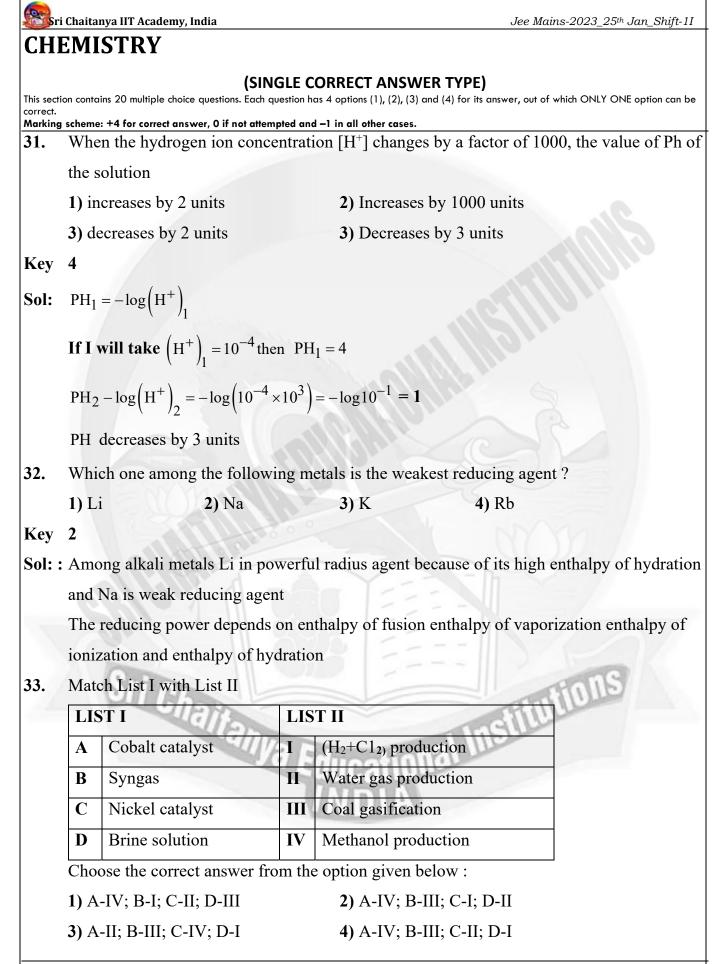
C. F₂ – Part of Thermosphere III. Approximate 10 km over Earth's surface

IV. 100 km over Earth Surface


Choose the correct answer from the options given below


1. $A - III, B - II, C - I, D - IV$	2) A – III, B – IV, C – II,
3) A – I, B – II, C – IV, D - III	4) $A - I$, $B - IV$, $C - III$, D -II


Jee Mains-2023_25th Jan_Shift-11


D. D- Part of Stratosphere

Sri Chaitanya IIT Academy, India Jee Mains-2023_25th Jan_Shift-11 Key 2 A. Tropo sphere range nearly 6 to 12 cm from the earth surface Sol: B. c-part of stratosphere 100km C. F2 – part o approximate 300km of earth surface in night time and 250-400 km. During day time D. D – part is 65-75 km above For a moving coil galvanometer the deflection in the coil is 0.05 rad when a current of 16. 10mA is passed through it. If the torsional constant of suspension wire is 4.0×10^{-5} N m rad⁻¹, the magnitude field is 0.01T and the number of turns in the coil is 200, the area of each turn (in cm^2) is 1) 1)5 2) 1)0 **3)** 0.5 4) 2)0 Key 2 Sol: CO = BIAN $4 \times 10^{-5} \times 0.05 = 0.01 \times 10 \times 10^{-3} \times A \times 200$ $A = 1.0 \times 10^{-4} m^2$ $A = 1.0 \text{ cm}^2$ According to law of equipartition of energy the molar specific heat of a diatomic gas at 17. constant volume where the molecule has one additional vibrational mode is 2) 9/2 R 3) 5/2 R 1) 7/2 R 4) 3/2 R Key 1 **Sol:** $C_V = \frac{1}{n} \frac{dU}{dT} \Rightarrow \frac{1}{n} \frac{d}{dT} \left[\frac{5}{2} nRT + nRT \right] = \frac{7R}{2}$ A point charge of 10µC is placed at the origin. At what location on the X-axis should a 18. point charge of 40μ C be placed so that the net electric field is zero at x = 2cm on the Xaxis? 3) x = -4 cm **1**) x = 4cm**2)** x = 6 cm**4)** x = 8 cmKey 2 Sol: Null point distance $x = \frac{d}{\sqrt{\frac{q_2}{q_1} + 1}} 2 = \frac{d}{\sqrt{\frac{40}{10} + 1}} = \frac{d}{3} \Rightarrow d = 6$ cm, Jee Mains-2023_25th Jan_Shift-11 Page 8

Jee Mains-2023_25th Jan_Shift-11

Key 4

Sol: Memory based

34. What is the mass ration of ethylene glycol ($C_2H_6O_2$, molar mass = 62 g/mol) required for making 500 g for 0.25 molal aqueous solution and 250 Ml of 0.25 molal aqueous solution ?

1) 1:12) 2:13) 3:14) 1:2

Key 2

Sol: $\frac{m_1}{m_2} = \frac{n_1 / w_1}{n_2 / w_2} \Rightarrow \frac{0.25}{0.25} = \frac{n_1}{n_2} \times \frac{250}{500}$ $\frac{n_1}{n_2} = \frac{2}{1} = \frac{(\text{mass of solute})_1}{(\text{mass of solute})_2}$

35. Given below are two statements, one is labeled as Assertion A and the other is labeled as Reason R.

Assertion A : The alkali metals and their salts impart characteristic colour to reducing flame.

Reason R : Alkali metals can be detected using flame tests.

In the light of the above statements, choose the most appropriate answer from the options given below

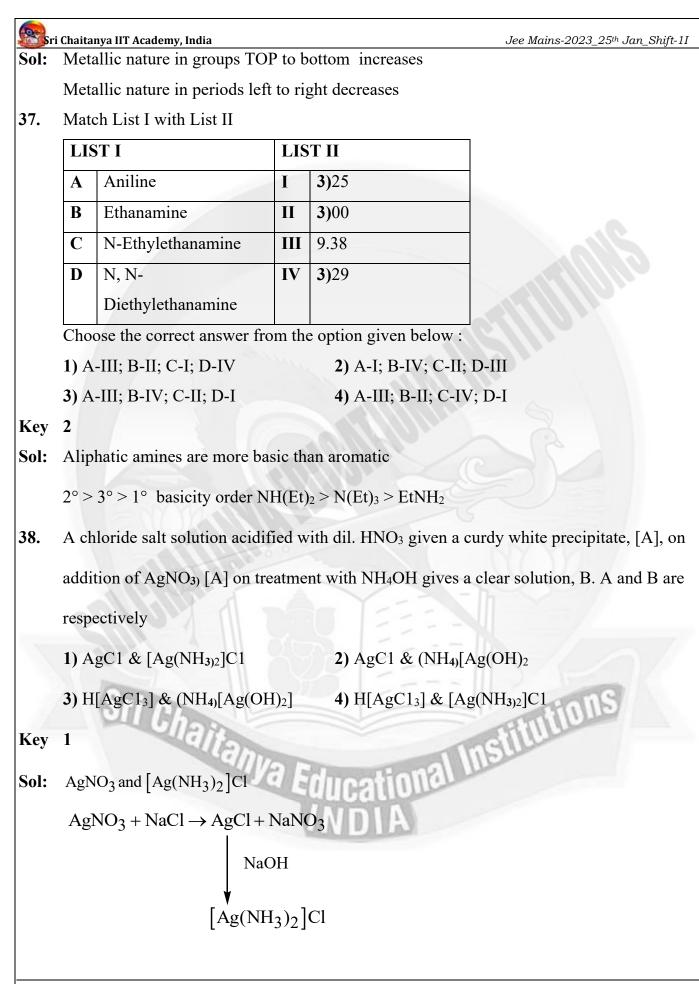
1) A is correct but R is not correct

2). Both A and R are correct and R is the correct explanation of A

3) Both A and R are correct but R is NOT the correct explanation of A

4) A is not correct but R is correct

Key


Sol: The alkalimetas and their salts impart characteristic colour to an oxidizing flame. This is because that heat from the flame exits the outermost orbital electron cause back to the ground state, they emit the approved energy in the form of light in visible region

36. Which of the following represents the correct order of metallic character of the given elements ?

1) Be $<$ Si $<$ Mg $<$ K	2) K < Mg < Be < Si
3) Si < Be < Mg < K	4) Be $<$ Si $<$ K $<$ Mg

Key 3

Jee Mains-2023_25th Jan_Shift-11

Given below are two statements, one is labellaed as Assertion A and the other is labelled 39. as **Reason R**

Assertion A : Carbon forms two important oxides – CO and CO₂, CO is neutral whereas CO₂ is acidic in nature

Reason R : CO₂ can combine with water in a limited way to form carbonic acid, while CO is sparingly soluble in water

1) Both A and R are correct and R is the correct explanation of A

2 A is not correct but R is correct

3) A is correct but R is not correct

4) Both A and R are correct but R is NOT the correct explanation of A

Key: 1

Both A and R correct and R is the correct explanation of A. CO. neutral CO₂ acidic

 $CO_2 + H_2O \rightarrow H_2CO_3 \rightleftharpoons H^+ + HCO_3^{2-}$

CO sparingly soluble salt

40. A. Ammonium salts produce haze in atmosphere

B. Ozone gets produced when atmospheric oxygen reacts with chlorine radicals

C. Polychlorinated biphenyl is act as cleansing solvents.

D. 'Blue baby' syndrome occurs due to the presence of excess of sulphate ions in water.

Choose the correct answer from the options given below :

1) A and C only 2) A, B and C only 3) B and C only 4) A and D only

Key: 1

Ammonium salts produce have in atmosphere

Polychlorinated biphenyls acts as clensing agent in case of metals istitutions

Match List I with List II 41.

LIS	TI UBI	LIS	тп
Co	ordination entity	111 -	velength of light orbed in nm
Α	$[CoC1(NH_{3)5}]^{2+}$	Ι	310
B	$[Co(NH_{3)6}]^{3+}$	II	475
С	$[Co(CN)_{6}]^{3-}$	III	535
D	[Cu(H2O) ₄] ²⁺	IV	600

Choose the correct answer from the options given below

Jee Mains-2023_25th Jan_Shift-11

1) A-II; B-III; C-IV; D-I

3) A-IV; B-I; C-III; D-II

A-III; B-I; C-II; D-IV
 A-III; B-II; C-I; D-IV

Key: 4

Based on NCERT Part I (XII) page no 259

 $\left[\text{CoCl}(\text{NH}_3)_5 \right]^{2+} 535$ $\left[\text{Co}(\text{NH}_3)_6 \right]^{+3} 475$ $\left[\text{CO}(\text{CN})_6 \right]^{-3} 310$ $\left[\text{Cu}(\text{H}_2\text{O})_4 \right]^{2+} 600$ correct answer is 4

42. Statement I : Dipole moment is a vector quantity and by convention it is depicted by a small arrow with tail on the negative centre and head pointing towards the positive centre.
Statement II : The crossed arrow of the dipole moment symbolizes the direction of the shift of charges in the molecules.

In the light of the above statements, choose the most appropriate answer from the options given below:

1) Statement I is incorrect but Statement II is correct

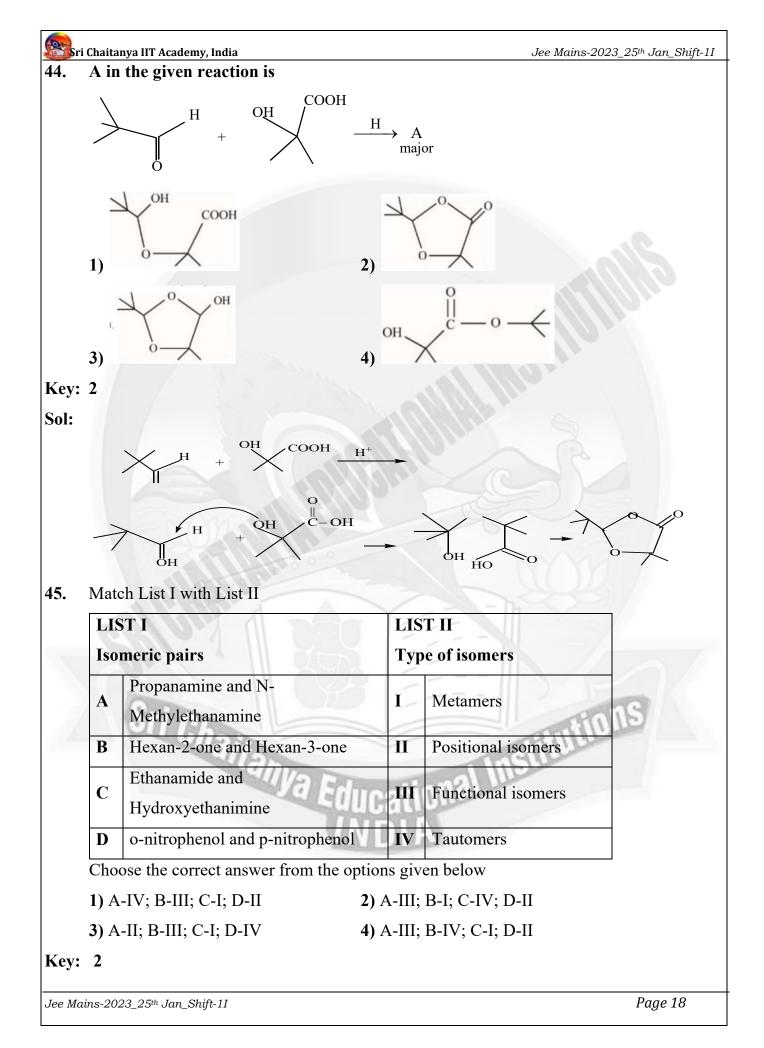
2) Both Statement I and Statement II are correct

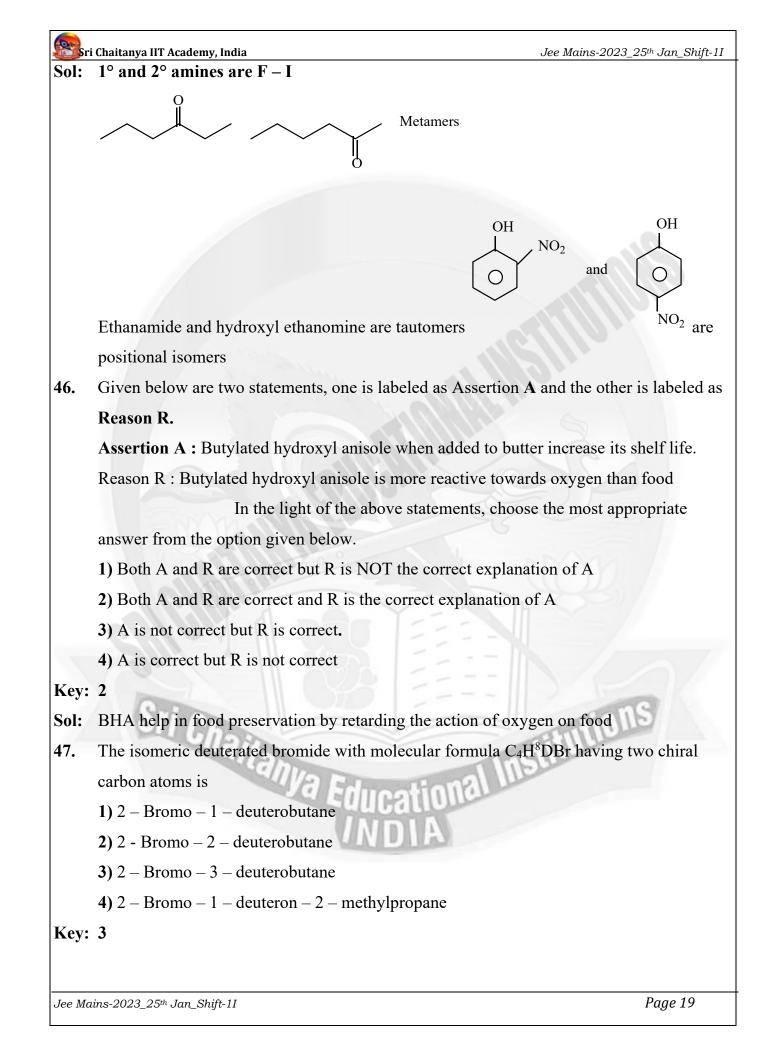
3) Statement I is correct but Statement II is incorrect

4) Both Statement I and Statement II are incorrect

Key: 3

- **Sol:** small arrow is pointing from negative centre to positive centre but the cross arrow is opposite
- **43.** Potassium dichromate acts as a strong oxidizing agent in acidic solution. During this process, the oxidation state changes from


```
1) +2 to +1 2) +6 to +3 3) +3 to +1 4) +6 to +2
Key: 2
```

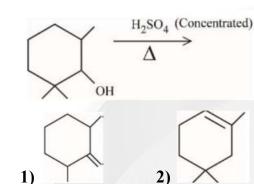

Sol:

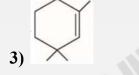
$$Cr_2O_4^{2-} \rightarrow 2Cr^{+3}$$

0.5 of Cr in $Cr_2O_7^{2-}$ $2x + 7(-2) = -2$
 $2x = +12 \implies x = +6$

0.5 g Cr in
$$Cr^{+3}in + 3$$

Jee Mains-2023_25th Jan_Shift-11

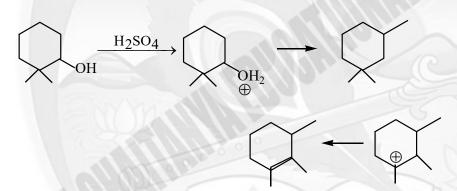



Jee Mains-2023_25th Jan_Shift-11

🐝ri Chaitanya IIT Academy, India

Ans
$$H_3C - \begin{array}{c} Br & D \\ | & | \\ C - C - C - C - CH_3 \\ |* & |* \\ H & H \end{array}$$

48. Find out the major product form the following reaction



4

Key: 4

Sol:

49. Given below are two statements

Statement I : In froth floatation method a rotating paddle agitates the mixture to drive air out of it

Statement II : Iron pyrites are generally avoided for extraction of iron

due to environmental reasons.

In the light of the above statements, choose the correct answer form the options given below

1) Both Statement I and Statement II are false

2) Statement I is false but Statement II is true

3) Statement I is true but Statement II is false

4) Both Statement I and Statement II are true

Key: 4

Sol: Fact

50. Match List I with List II

LIS	LIST I		LIST II	
(Na	ume of polymer)	(Uses	5)	
Α	Glyptal	Ι	Flexible pipes	
В	Neoprene	II	Synthetic wool	
С	Acrilan	III	Paints and Lacquers	
D	LDP	IV	Gaskets	

Choose the correct answer from the options given below :

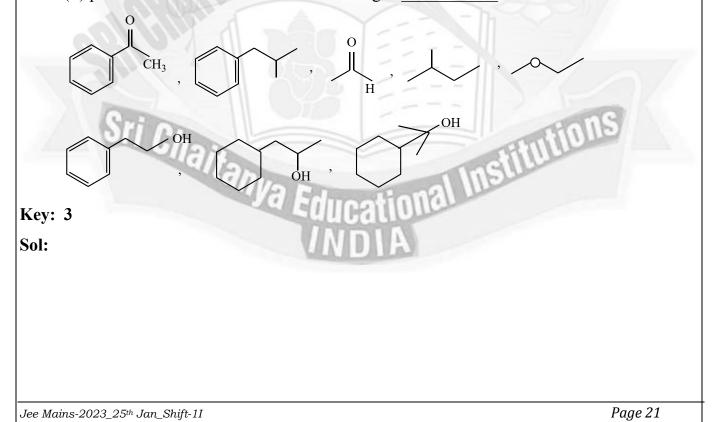
1) A-III; B-IV; C-I; D-II

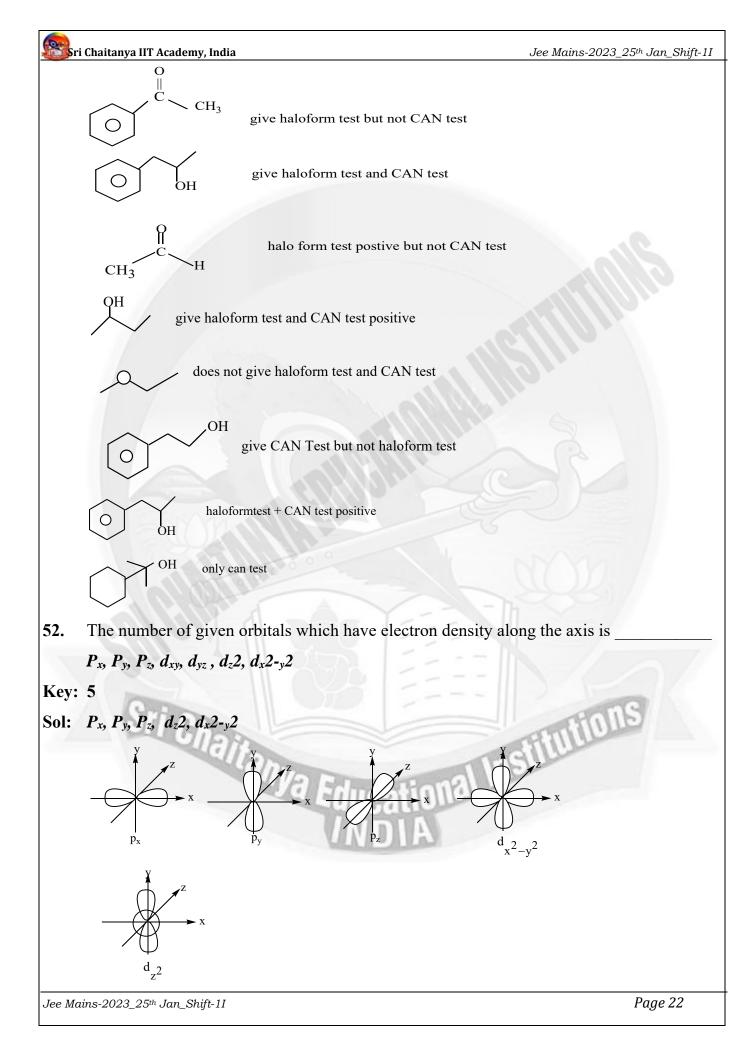
2) A-III; B-IV; C-II; D-I

3) A-III; B-I; C-IV; D-II

4) A-III; B-II; C-IV; D-I

Key: 2


Sol: use of polymers


(NUMERICAL VALUE TYPE)

Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions only. First 5 attempted questions will be considered if more than 5 questions attempted. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the nearest Integer value (Example i, e. If answer is above 10 and less than 10.5 round off is 10 andIf answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases

51. Number of compounds giving (i) red colouration with ceric ammonium nitrate and also

(ii) positive iodoform test from the following is

Sri	Chaitanya IIT Academy, India Jee Mains-2023_25 th Jan_Shift-1
Sol:	$\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]\operatorname{Cl}+\operatorname{AgNO}_3=\operatorname{1mole}\operatorname{AgCl}$
	$[Ni(H_2O)_6]Cl_2 + AgNO_3 = 2mole AgCl$
	$\left[Pt(NH_3)_2 Cl_2 \right] + AgNO_3 = zero mole AgCl$
	$\left[Pt(NH_3)_4 \right] Cl_2 + AgNO_3 = 2mole AgCl$
	total number of moles of $AgCl = 5$
55.	A first order reaction has the rate constant, $k = 4.6 \times 10^{-3} s^{-1}$. The number of correct
	statement/s from the following is/areGiven : log 3 = 0.48
	A. Reaction completes in 1000 s.
	B. The reaction has a half-life of 500 s.
	C. The time required for 10% completion is 25 times the time required for 90%
	completion.
	D. The degree of dissociation is equal to (1-e ^{-kt})
	E. The rate and the rate constant have the same unit
Key:	2
Sol:	A. $t = \frac{2.303}{K} \log \frac{a}{(a-x)} \Rightarrow t = \frac{2.303}{4.6 \times 10^{-3}} = \frac{2.303}{4.6} \times 10^3 = 2500 \text{ sec}$
	B. $t_{1/2} = \frac{0.693}{K} = \frac{0.693}{4.6} \times 10^3 = \frac{693}{4.6} = 150 \text{sec}$
	C. $\frac{t_{90\%}}{t_{10\%}} = \frac{\frac{2.303}{K} \log\left(\frac{100}{10}\right)}{\frac{2.303}{k} \log\left(\frac{100}{10}\right)} = \frac{\log 10}{\log 10 - \log 9} = \frac{1}{0.04} = 25$
	D. Arrhenious equation $K = A_0 e^{-kt}$ $A \rightarrow B$ $a_0 0$ $a_0 (1 - \alpha) a_0 \alpha$
	A→B
	$A \rightarrow B$ $a_0 0$
	$a_0(1-\alpha) a_a \alpha$
	$a_0(1-\alpha) = a.e^{-kt}$
	$(1-\alpha) = e^{-kt}$
	$\alpha = e^{1-kt}$
	$=1-e^{-kt}$
Jee Ma	ins-2023_25 th Jan_Shift-11 Page 24

Sri		2023_25 th Jan_Shift-11		
56.	Number of hydrogen atoms per molecules of a hydrocarbon A having 83	5.8% carbon is		
	$\overline{(\text{Given : molar mass of A} = 84 \text{ g mol}^{-1})}$			
Key:	- <i>i</i>			
-	% of C $\frac{85.8}{12} = \frac{7.15}{7.15} = 1$			
	12 7.15			
	% of H $\frac{14.2}{1} = \frac{14.2}{7.15} = 2$			
	Empirical formula = CH_2			
	Molecular formula = $(EF)_n \Rightarrow n = \frac{MW}{EFW} = \frac{84}{14} = 6$			
	$MF = (CH_2)_6 = C_6H_{12}$			
	Number of hydrogen atoms = 12			
57.	The number of pairs of the solutions having the same value of the osmotic pressure from			
	the following is			
	(Assume 100% ionization)			
	A. 0.500 M C_2H_5OH (aq) and 0.25 M KBr (aq)			
	B. 0.100 M K ₄ [Fe(CN) ₆] (aq) and 0.100 M FeSO ₄ (NH ₄) ₂ SO ₄ (aq)			
	C. 0.05 M K ₄ [Fe(CN) ₆] (aq) and 0.25 M NaCl (aq)			
	D. 0.15 M NaCl (aq) and 0.1 M BaCl ₂ (aq)			
	E. 0.02 M KC1.MgCl ₂ .6H ₂ O (aq) and 0.05 M KCl (aq			
Key:	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Sol:	(i) $0.5M C_2H_5OH \rightarrow \text{particle conc} = 0.5$			
	and 0.25 nKBr $\rightarrow 0.25$ X ₂ = 0.5	DIP		
	$0.1 \text{MK}_4[\text{Fe}(\text{CN})_6] \rightarrow 0.5 \text{ and } 0.1 \text{MFeSO}_4(\text{NH}_4)\text{SO}_4 \rightarrow 0.5$			
	(i) $0.5M C_2H_5OH \rightarrow \text{particle conc} = 0.5$ and $0.25nKBr \rightarrow 0.25X_2 = 0.5$ $0.1MK_4[Fe(CN)_6] \rightarrow 0.5 \text{ and } 0.1M FeSO_4 (NH_4)SO_4 \rightarrow 0.5$ (ii) $\left(0.1Fe^{2+} + 0.1MSO_4 + 0.2NH_4^+ + 0.1MSO_4^{-2}\right)$			
	(iii) $0.05 \text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow 0.05 \times 5 = 0.25 \text{ and } 0.25 \text{M} \text{ NaCl} \rightarrow 0.5$			
	(iv) $0.15 \text{ M NaCl} \rightarrow 0.30 \text{ M}$ and $0.1 \text{ M BaCl}_2 \rightarrow 0.304$			
	(v) $0.02 \text{ KCl MgCl}_2.6\text{H}_2\text{O} \rightarrow 0.1\text{M}$			
	$0.5 \mathrm{MKCl} \rightarrow 0.1 \mathrm{M}$			
	So except 3			
	1, 2, 3, 4 are correct			
Jee Ma	ins-2023_25 th Jan_Shift-11	Page 25		

Sri Chaitanya IIT Academy, India Jee Mains-2023_25th Jan_Shift-11 28.0 L of CO₂ is produced on complete combustion of 16.8 L gaseous mixture of ethane **58**. and methane at 25^oC and 1 atm. Heat evolved during the combustion process is kJ. Given $\Delta H_{c}(CH_{4}) = -900 \text{kJ} \text{ mol}^{-1}$; $\Delta H_{C}(C_{2}H_{4}) = -1400 \text{kJ} \text{ mol}^{-1}$ Key: 925.22 Sol: Ethen + methane mixture $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ аL $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (16.8-a) (16.8-a)L**Total volume of** $CO_2 = (16.8 - a + 2a)L = 16.8 + aL = 28.026$ a = 28.02 - 16.8 = 11.226 $V_{C_2H_4=11.22L}$ $V_{CH_4} = 5.58L$ ${}^{n}C_{2}H_{4} = \frac{11.22}{22.4}$ ${}^{n}CH_{4} = \frac{5.58}{224}$ $^{n}C_{2}H_{4}=0.5008$ $^{n}CH_{4}=0.249$ mole $\Delta_0 H CH_4 \Rightarrow 1 mole CH_4 gives 900 KT$ $\Delta_0 H C_2 H_2 \Rightarrow$ 1mole of $C_2 H_4$ give = 1400kJ total energy og combustion $= 0.5008 \times 1400 + 0.249 \times 900$ = 701.12 + 224.1 = 925.22KJ Based on the given figure, the number of Correct statement/s is/are 59. Liquid molecule al Institutions on the surface Liquid molecule in the bulk A. Surface tension is the outcome of equal attractive and repulsive forces action on the liquid molecule in bulk. B. Surface tension is due to uneven forces acting on the molecules present on the surface. C. The molecule in the bulk can never come to the liquid surface D. The molecules on the surface are responsible for vapour pressure if the system is a closed system Page 26 Jee Mains-2023_25th Jan_Shift-11

Key: 2

Sol: BD otpions

60. The number of **incorrect** Statement/s from the following is are ______

A.Water vapours are adsorbed by anhydrous calcium chloride.

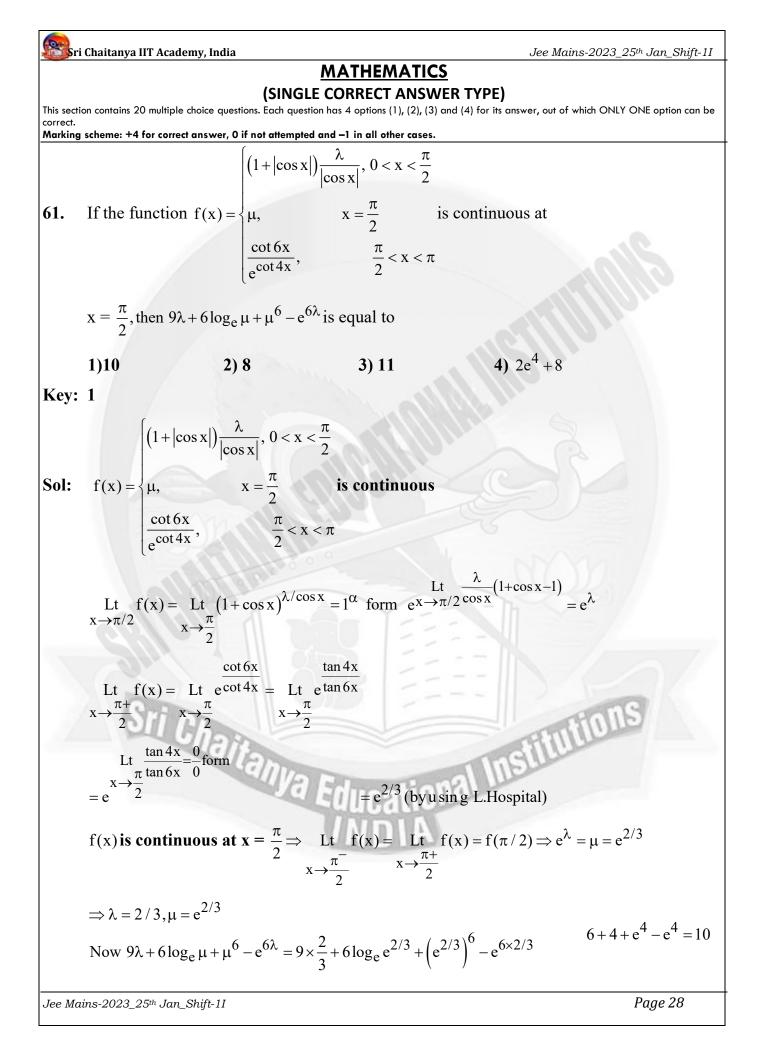
B. There is a decrease in surface energy during adsorption.

C.As the adsorption proceeds, ΔH becomes more and more negative.

D.Adsorption is accompanied by decrease in entropy of the system

Key: 1

Sol: Water vapour are absorbed by CaCl₂ not adsorbed during adsorption surface area a decreased


 ΔH becomes -v e in adsorption

Entropy decrease during adsorption due to accumulation

Only given statement 1 is wrong in the above question

ri Chaitanya Edu

nal Institutions

	Chaitanya IIT Acad			Jee Mains-2023_25 th Jan_Shift-11
62.		of number strictly b	etween 5000 and 1	10000 can be formed using the digits 1,
	3, 5, 7, 9			
	Without repe			
1.	6	2) 120	3) 12	4) 72
Key:				
Sol:.	No of numbe	ers between 5000 and	d 10000 can be for	rmed using the digits 1, 3, 5, 7, 9
	wihtout repu	tation The 1	st place fill by 5 or	7 or 9 in 3 ways. Remaining 3 poles
	can be filled	by other 4 digits in	4P ₃ ways	
	Required no	of ways = $3 \times {}^4P_3 = 3$	$3 \times 4! = 72$	
			z-2i	
63.	Let z be a co	mplex number such	that $\left \frac{z-z_1}{x+1}\right = 2, z =$	\neq -1. Then z lies on the circle of radius
	2 and centre			
	1) (0,0)	2) (2,0)	3) (0,2)	4) (0, -2)
Key:				
Sala	7 has a second	an annshara an sh th	z-2i = 2	
Sol:	Z be a compl	ex numbers such the	at $ \overline{z+i} = 2, \ z \neq -$	1
	Let $z = x + iy$,	$\Rightarrow \left z-2i\right =2\left z+i\right \Rightarrow$	x + i(y - 2) = 2 x - i(y -	+i(y+1)
	$\Rightarrow x^2 + (y - 2)$	$(2)^2 = 4(x^2 + (y+1)^2)$	$\Rightarrow x^2 + y^2 + 4y = 0$	0 Centre (0,-2)
		,		(0, 2)
64.	$\sum_{k=0}^{6} 5^{1-k} C_3 is$	s equal to		
	k=0			
	1) ${}^{52}C_4 - {}^{45}C_4$	C_4 2) ${}^{52}C_3 - {}^{45}C_3$	C_3 3) ${}^{51}C_3 - {}^{45}$	$C_3 = 4)^{51}C_4 - {}^{45}C_4$
Key:	1	Silan		C_3 4) ⁵¹ C ₄ - ⁴⁵ C ₄
	6	Collips .	PI PI	11150
Sol:	Δ C_3		Education	
	k=0	40 48 47	(NDIA)	
	${}^{51}C_3 + {}^{50}C_3 -$	$+ {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3$	$+ {}^{40}C_3 + {}^{43}C_3$	
	Add and sub	otract by ${}^{45}C_4$ and	used the result ⁿ	$\mathbf{C}_{\mathbf{r}} + {}^{\mathbf{n}}\mathbf{C}_{\mathbf{r}-1} = {}^{\mathbf{n}+1}\mathbf{C}_{\mathbf{r}}$

Jee Mains-2023_25th Jan_Shift-11

$$={}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 + {}^{46}C_3 + ({}^{45}C_3 + {}^{45}C_4) - {}^{45}C_4$$

$$={}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 + ({}^{46}C_3 + {}^{46}C_4) - {}^{45}C_4$$

$$={}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + ({}^{48}C_3 + {}^{47}C_3 + {}^{47}C_4) - {}^{45}C_4$$

$$={}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + ({}^{48}C_3 + {}^{48}C_4) - {}^{45}C_4$$

$$={}^{51}C_3 + {}^{50}C_3 + {}^{50}C_4 - {}^{45}C_4$$

$$={}^{51}C_3 + {}^{50}C_4 - {}^{45}C_4$$

$$={}^{51}C_4 - {}^{45}C_4$$

Let T and C respectively be the transverse and conjugate axes of the hyperbola 65. $16x^2 - y^2 + 64x + 4y + 44 = 0$. Then the area of the region above the parabola $x^2 = y + 4$ below the transverse axis T and on the right of the conjugate axis C is

1)
$$4\sqrt{6} - \frac{44}{3}$$
 2) $4\sqrt{6} + \frac{28}{3}$ **3)** $4\sqrt{6} + \frac{44}{3}$ **4)** $4\sqrt{6} - \frac{28}{3}$

Key: 2

Sol: Given hyperbola $16x^2 - y^2 + 64x + 4y + 44 = 0$

$$\Rightarrow \frac{(x+2)^2}{12} - \frac{(y-2)^2}{4^2} = 1$$

Centre (-2, 2), $a^2 = 1^2, b^2 = 4^2$

Given parabola $x^2 = y + 4$

Required Area =
$$\int_{-\sqrt{6}}^{\sqrt{6}} (2 - (x^2 - 4)) dx - \int_{-\sqrt{6}}^{-2} (2 - (x^2 - 4)) dx$$

$$\begin{array}{c|c} c & y = 2 \\ \hline (-1,2) & (-\sqrt{6},0) \\ \hline (-\sqrt{6},0) (-2,0) & (0,0) \\ \hline (\sqrt{6},0) \\ \hline \end{array}$$

(0, -4)

Jee Mains-2023_25th Jan_Shift-11

$$\begin{aligned} &= 2 \int_{0}^{\sqrt{6}} \left(6 - x^{2} \right) dx - \int_{\sqrt{6}}^{-2} \left(6 - x^{2} \right) dx \\ &= 2 \left[6x - \frac{x^{3}}{5} \right]_{0}^{\sqrt{6}} - \left[6x - \frac{x^{3}}{3} \right]^{-2} \\ &= 2 \left[6\sqrt{6} - \frac{6\sqrt{6}}{3} \right] \left(-12 + \frac{8}{3} + 6\sqrt{6} = 2\sqrt{6} \right) \\ &= 8\sqrt{6} + \frac{28}{3} - 4\sqrt{6} \\ &= 4\sqrt{6} + \frac{28}{3} \\ &= 4\sqrt{6} + \frac{28}{3} \\ &= 4\sqrt{6} \\ &= 4\sqrt$$

Jee Mains-2023_25th Jan_Shift-11 The integral $16\int_{1}^{2} \frac{dx}{x^{3}(x^{2}+2)^{2}}$ is equal to **1**) $\frac{11}{6} - \log_e 4$ **2**) $\frac{11}{6} + \log_e 4$ **3**) $\frac{11}{126} + \log_e 4$ **4**) $\frac{11}{126} - \log_e 4$

Key: 1

67.

Sol:
$$\int_{1}^{2} \frac{1}{x^{7} (x^{2} + 2)^{2}} dx = \int_{1}^{2} \frac{1}{x^{7} (1 + \frac{2}{x^{2}})} dx \Rightarrow -\frac{1}{4} \int_{3}^{3/2} (\frac{t - 1}{2})^{2} \frac{dt}{t^{2}}$$
$$\frac{1}{4} \int_{3/2}^{3} \frac{t^{2} + 1 - 2t}{4} \frac{1}{t^{2}} dt \Rightarrow \frac{1}{16} \int_{3/2}^{3} 1 + \frac{t}{t^{2}} - \frac{2}{t} dt$$
$$\frac{1}{16} (3 - \frac{1}{3} - 2\log - \frac{3}{2} + \frac{2}{3} + 2\log \frac{3}{2}) \Rightarrow \frac{1}{16} (\frac{3}{2} + \frac{1}{3} + 2\log \frac{1}{2})$$

$$\Rightarrow \frac{1}{16} \left(\frac{9+2}{6} + 2\log t \right) \qquad 16I = \frac{11}{6} - \log 4$$

68. If the four points, whose position vectors are

$$3\hat{i}-4\hat{j}+2\hat{k},\hat{i}+2\hat{j}-\hat{k}, -2\hat{i}-\hat{j}+3\hat{k}$$
 and $5\hat{i}-2\alpha\hat{j}+4\hat{k}$ are coplanar then α is equal to
1) $\frac{73}{17}$ 2) $-\frac{73}{17}$ 3) $\frac{107}{17}$ 4) $-\frac{107}{17}$

Key: 1

Sol:
$$\overrightarrow{OA} = 3\hat{i} - 4\hat{j} + 2\hat{k}$$
; $\overrightarrow{OB} = \hat{i} + 2\hat{j} - \hat{k}$; $\overrightarrow{OC} = -2\hat{i} - \hat{j} + 3\hat{k}$; $\overrightarrow{OD} = 5\hat{i} - 2\alpha\hat{j} + 4\hat{k}$
 $\overrightarrow{AB} = \hat{i} + 2\hat{j} - \hat{k} - 3\hat{i} + 4\hat{j} - 2\hat{k} = -2\hat{i} + 6\hat{j} - 3\hat{k}$
 $\overrightarrow{AC} = -2\hat{i} - \hat{j} + 3\hat{k} - 3\hat{i} + 4\hat{j} - 2\hat{k} = -5\hat{i} + 3\hat{j} - \hat{k}$
 $\overrightarrow{AD} = 5\hat{i} - 2\alpha\hat{j} + 4\hat{k} - 3\hat{i} + 4\hat{j} - 2\hat{k} = -2\hat{i} + (-2\alpha + 4) + 2\hat{k}$
 $ABCD \text{ are coplanr} \left[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}\right] = 0 \Rightarrow \begin{vmatrix} -2 & 6 & -3 \\ -5 & 3 & 1 \\ 2 & -2\alpha + 4 & 2 \end{vmatrix} = 0$

Sri	i Chaitanya IIT Academy, India	Jee Mains-2023_25 th Jan_Shift-
	$-2(6+2\alpha-4)-6(-10-2)-3(10\alpha-20-6)$	
	$-2(2+2\alpha)-6(-12)-3(10\alpha-26)=0$	
	$= 4 - 4\alpha + 72 - 30\alpha + 78 = 0$	
	$-34\alpha + 146 = 0$	
	$-34\alpha = -146$	
	$\alpha = \frac{146}{34} = \frac{73}{17}$	
69.	The number of functions $f: \{1, 2, 3, 4\} \rightarrow \{a \in \mathbb{Z} \mid a \mid \le 8\}$ satisfy	sfying
	$f(n) + \frac{1}{n}f(n+1) = 1, \forall n \in \{1, 2, 3\}$ is	
1.	1 2) 3 3) 2	4) 4
Key:	3	
Sol:		
501.	(1224) + (1122)	
	$f: \{1, 2, 3, 4\} \rightarrow \{a \in \mathbb{Z}, a \le 8\}$	
	$f(n) + \frac{1}{2}f(n+1) = 1, n \in \{1, 2, 3\}$	
	$ f(1) + \frac{1}{1}f(2) = 1 f(2) + \frac{1}{2}f(3) = 1 $ $ f(3) + \frac{1}{3}f \mid 4 \mid = 1 $	
	$f(3) + \frac{1}{2}f(4) = 1$	
	$f(2) + \frac{1}{2}f(3) = 1$ 3	
	$f(1) = \frac{1}{2}f(3)$ $2f(1) + \frac{1}{3}f 4 = 1$	
	4f(1) + f(4) = 2	
	f(1) + f(4)	HATS
	$f(3) = \frac{f(1) + f(4)}{2}$	HILLUNG
	f(1), f(3), f(4) arein A	ISUL
	no of function 3	
70.	Let $\Delta, \nabla \in \{\wedge, \vee\}$ be such that $(p \rightarrow q)\Delta(p\nabla q)$ is tautology.	Institutions Then
	SULLE	
	1) $\Delta = \wedge, \nabla = \wedge$ 2) $\Delta = \wedge, \nabla = \vee$ 3) $\Delta = \vee, \nabla = \vee$	$4 j \Delta = \lor, v = \land$

Sri Chaitanya IIT Academy, India Jee Mains-2023_25th Jan_Shift-11 Key: 3 $(\sim p \lor q) \lor (p \lor q) \Rightarrow (\sim p \lor q) \lor (p \lor q)$ true Sol: 71. Let N be the sum of the numbers appeared when two fair dice are rolled and let the probability that N – 2 $\sqrt{3N}$, N + 2 are in geometric progression be $\frac{k}{48}$. Then the value of k is 1) 16 2) 2 3) 4 4) 8 Key: 4 **Sol:** given N-2, $\sqrt{3}N$, N+2 are in G.P then $(\sqrt{3}N)^2 = (N-2)(N+2) \Rightarrow 3N = N^2 - 4$ \Rightarrow N²-3N-4=0 \rightarrow (N-4)(N+1)=0 $N = 4 \rightarrow sum \ 4 = (1,3)(3,1)(2,2)$ then $P(X = 4) = \frac{3}{36} = \frac{1}{12} = \frac{4}{48}$ then = k = 4Let the function $f(x) = 2x^3 - (2p-7)x^2 + 3(2p-9)x - 6$ have a maximum for some value of 72. x < 0 and a minima for some value of x > 0. Then the set of all value of p is 1) $\left(\frac{9}{2},\infty\right)$ 2) $\left(0,\frac{9}{2}\right)$ 3) $\left(-\frac{9}{2},\frac{9}{2}\right)$ 4) $\left(-\infty,\frac{9}{2}\right)$ Key: 4 **Sol:.** $f(x) = 2x^3 + (2p-7)x^2 + 3(2p-9)x - 6$ $f'(x) = 6x^{2} + 2x(2p - 7) + 3(2p - 9)$ Since $\alpha\beta < 0 \rightarrow 3(2p-9) < 0$, $2\beta < 9 \Rightarrow p < \frac{9}{2}$ $p \in (-\infty, 9/2)$ The shortest distance between the lines x + 1 = 2y = -12z and x = y + 2 = 6z - 6 is 73. 1) 5/2 2) 3 4) 2 3) 3/2 Key: 4

Jee Mains-2023_25th Jan_Shift-11

🔊 ri Chaitanya IIT Academy, India

Sol:

$$\frac{x - (-1)}{1} = \frac{y - 0}{1/2} = \frac{z - 0}{-1/2} \text{ is } \frac{x + 1}{-12} = \frac{y}{-6} = \frac{z}{1} \rightarrow \frac{x - (-1)}{-12} = \frac{y}{-6} = \frac{z}{1}$$
also $x = y + 2 = 6(z - 1) \Rightarrow \frac{x}{6} = \frac{y + 2}{6} = \frac{z - 1}{1}$
 $(x_1, y_1, z_1) = (-1, 0, 0), (x_2, y_2, y_2) = (0, -2, 1)$
 $(b_1, b_2, b_3) = (-12, -6, 1), (c_1, c_2, c_3) = (6, 6, 1)$

$$S.D = \frac{\left[\left[\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}\right]\right]}{\left[\vec{b} \times \vec{d}\right]} = \left[\left[\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}\right] = \left[\left[\left[\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}\right]\right]\right] = \left[\left[\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}\right]\right] = \left[\left[\left[\left[1 - 2 - 0 \right]\right]\right] = \left[\left[1 - 2 - 0 \right]\right]$$
 $= -(-6, -6) - 2(-12 - 6) - 1(-72 + 36)$
 $= 12 + 36 + 36 = 84$
 $\vec{b} \times \vec{d} = \left[\left[\left[1 - 2 - 6 \right]\right]\right] = \vec{1}(-6 - 6) - \hat{j}(12 - 6) + \hat{k}(-72 + 36)$
 $= -12\hat{i} + 18\hat{j} - 36\hat{k}$
 $-6(2\hat{i} - 3\hat{j} + 6\hat{k})$
 $\left|\vec{b} \times \vec{d}\right| = 6\sqrt{4 + 9 + 36} = 6 \times 7$ $S.D = \frac{8 - 4}{6 \times 7} = 2$
74. Let $y = y(t)$ be a solution of the differential equation $\frac{dy}{dt} + \alpha y = \gamma e^{-\beta t}$ where $\alpha > 0, \beta > 0$ and $\gamma > 0$ then $\lim_{t \to \infty} y(t)$
1) is 1
2) Does not exist 3) Is 0
4) Is -1
Key: 3
Sol: $\frac{dy}{dt} + \alpha y = \gamma e^{-\beta t} \Rightarrow 1F = e^{\int \alpha} dt = e^{\alpha t}$
sol is $y(1F) = \int Q(1F) dt + C \Rightarrow y(e^{\alpha t}) = \int y e^{(\alpha + \beta)t} dt + C$
 $y(e^{\alpha t}) = \gamma, \frac{e^{(\alpha + \beta)t}}{(\alpha - \beta)} + C$

Jee Mains-2023_25th Jan_Shift-11

Page 35

$$y = \gamma \cdot \frac{e^{-\beta t}}{a - \beta} + ce^{-\alpha t}$$

$$\lim_{t \to 0} y(t) = \lim_{t \to \infty} \left(\frac{\gamma}{a - \beta} e^{-\beta^{t}} + ce^{-\alpha t} \right) = 0$$
75. Let $A = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -i \\ 0 & 1 \end{bmatrix}$, where $i = \sqrt{-1}$ If $M = A^{T}BA$, then the inverse of the matrix $AM^{2023}A^{T}$ is
$$10 \begin{bmatrix} 1 & 0 \\ -2023i & 1 \end{bmatrix} = 20 \begin{bmatrix} 1 & 0 \\ 2023i & 1 \end{bmatrix} = 30 \begin{bmatrix} 1 & 2023i \\ 2023i & 1 \end{bmatrix} = 30 \begin{bmatrix} 1 & 2023i \\ 0 & 1 \end{bmatrix} = 40 \begin{bmatrix} 1 & -2023i \\ 0 & 1 \end{bmatrix}$$
Key: 3
$$M^{2} = (A^{T}BA)(A^{T}BA) = A^{T}B^{2}A$$
Sol: $AA^{T} = \begin{bmatrix} \frac{1}{\sqrt{10}} \frac{3}{\sqrt{10}} \\ -\frac{3}{\sqrt{10}} \frac{1}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{10}} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \end{bmatrix} = \begin{bmatrix} \frac{1}{10} + \frac{9}{10} & \frac{-3}{10} + \frac{3}{10} \\ -\frac{3}{10} + \frac{3}{10} & \frac{9}{10} + \frac{1}{10} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Continuing like this
$$M^{3} = (A^{T}B^{2}A)(A^{T}BA) = A^{T}B^{3}A$$
76. If $f : R \to R$ be a function defined by $f(x) = \log_{\sqrt{m}} \{\sqrt{2}(\sin x - \cos x) + m - 2\}$ for some m, such that the range of f is $[0,2]$ Then the value of m is
$$1) 5 \qquad 2 \ 3 \qquad 3 \ 4 \qquad 4 \ 2$$
Key: 1
Sol: $f(x) = \log_{\sqrt{m}} (\sqrt{2}(\sin x - \cos x) + m - 2)$

$$\sqrt{2}(\sin x - \cos x) = \sqrt{2} [-\sqrt{2}\sqrt{2}] = [-2,2]$$

$$f(x) = \log_{\sqrt{m}} ([-4 + m]] = [0, 7]$$

$$\log_{\sqrt{m}} = (-4 + m) = 0 \Rightarrow -4 + m = 1 \Rightarrow m = 5$$

Sri	Chaitanya IIT Academy, India	Jee Mains-2023_25 th Jan_Shift-11
77.	The equation of two sides of a variab	ble triangle are $x = 0$ and $y = 3$ and its third side is a
	tangent to the parabola $y^2 = 6x$. The	locus of its circumcentre is
	$1) \ 4y^2 - 18y + 3x + 18 = 0$	$2) 4y^2 + 18y + 3x + 18 = 0$
	3) $4y^2 - 18y - 3x + 18 = 0$	4) $4y^2 - 18y - 3x - 18 = 0$
Key:	1	
Sol:	L is tangent to $y^2 = 6x$	
	$4a = 6 \Longrightarrow a = \frac{3}{2}$	
	Tangent $y = mx + \frac{a}{m} \Rightarrow y = mx + \frac{3}{2m}$	
	$\mathbf{B} = \left(0, \frac{3}{2m}\right), \mathbf{C} = \left(\frac{3}{m} - \frac{3}{2m^2}, 3\right)$	
	$C = \left(\frac{3}{m} - \frac{3}{2m^2}, 3\right)$	
	Wt (x1, y1) be the circum centre of	Γ ΔΑΒC
	$x_1 = \frac{0 + \frac{3}{m} - \frac{3}{2m^2}}{2}, y_1 = \frac{\frac{3}{2m} + 3}{L}$	
	$x_1 = \frac{3}{2m} - \frac{3}{4m^2} y_1 = \frac{3}{4m} + \frac{3}{2}$	
	$\Rightarrow x_1 y_1^2 - 18y_1 + 3x_1 + 18 = 0$	
	$\Rightarrow 4y^2 - 18y + 3x + 18 = 0$	
78.	The foot of perpendicular of the poir	at (2, 0, 5) on the line $\frac{x+1}{2} = \frac{y-1}{5} = \frac{z+1}{-1}$ is (α, β, γ)
	Then which of the following is NOT	correct?
	1) $\frac{\alpha\beta}{\gamma} = \frac{4}{15}$ 2) $\frac{\beta}{\gamma} = -5$	3) $\frac{\gamma}{\alpha} = -\frac{5}{8}$ 4) $\frac{\alpha}{\beta} = -8$
Key:	2	
Jee Ma	ins-2023_25 th Jan_Shift-11	Page 37

0 va IIT Acadomy India Jee Mains-2023_25th Jan_Shift-11

S

Sol:

$$L = \frac{x+1}{2} = \frac{y-1}{5} = \frac{z+1}{-1} (=\lambda)$$

$$G = (x, y, z) = (2\lambda - 1, 5\lambda + 1, -\lambda - 1)$$

$$Dr's \overline{PQ} = (2\lambda - 3, 5\lambda + 1, -\lambda - 6)$$

$$\overline{PQ} \perp L \Rightarrow 2(2\lambda - 3) + 5(5\lambda + 1) - 1(-\lambda - 6) = 0$$

$$4\lambda - 6 + 25\lambda + 5 + \lambda + 6 = 0$$

$$30\lambda = -5, \lambda = -\frac{1}{6}$$

$$Q = \left(-\frac{2}{6} - 1, -\frac{5}{6} + 1, \frac{1}{6} - 1\right)$$

$$Q = \left(-\frac{2}{6} - 1, -\frac{5}{6} + 1, \frac{1}{6} - 1\right)$$

$$Q = \left(-\frac{2}{6} - 1, -\frac{5}{6} + 1, \frac{1}{6} - 1\right)$$

$$Q = \left(-\frac{4}{3}, \frac{1}{6}, -\frac{5}{6}\right)$$

$$1) \frac{\gamma}{\gamma} = \frac{-\frac{5}{-\frac{4}{5}}}{-\frac{5}{6}} = \frac{5}{6} \text{ correct}$$

$$2) \frac{\beta}{\gamma} = \frac{-\frac{5}{-5}}{-\frac{5}{6}} = \frac{-1}{5} \text{ incorect given } \frac{\beta}{\gamma} = -5$$

$$3) \frac{\alpha}{\alpha} = \frac{-\frac{5}{-\frac{4}{3}}}{-\frac{5}{6}} = \frac{5}{8} \text{ correct}$$
79. Let A, B, C be 3 x 3 matrices such that A is symmetric and B and C are skew symmetric consider the statements
S1: $\Lambda^{13}B^{26} - B^{26}\Lambda^{13}$ is symmetric S2: $\Lambda^{26}C^{13} - C^{13}\Lambda^{26}$ is symmetric then
1) both S1 and S2 are false
3) Only S2 is true
4) Only S1 is true
Key: 3
Sol: $\Lambda^{T} = A, B^{T} = B, C^{T} = C$

$$S_{1} = \text{wt } M = \Lambda^{13}B^{26} - B^{26}\Lambda^{13}$$

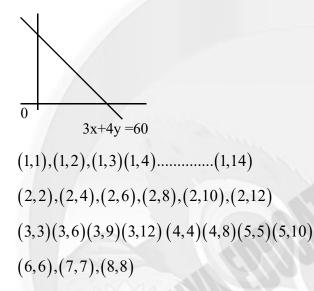
$$M^{T} = (B^{T})^{26}(\Lambda^{T})^{13} - (\Lambda^{T})^{13}(B^{T})^{26}$$

$$M^{T} = B^{26}\Lambda^{13} - \Lambda^{13}B^{26} = -M$$
M is skew symmetric

Jee Mains-2023_25th Jan_Shift-11

	i Chaitanya IIT Academy, India		Jee Mains-2023_25 th Jan_Shift-11
	$S2 = N = A^{26}C^{13} - C^{13}A^{26}$		
	$N^{T} = (C^{T})^{13} (A^{T})^{26} - (A^{T})^{26} (C^{T})^{26} (C^{T}$	$(C^T)^{13}$	
	$N^{\rm T} = -C^{13}A^{26} + A^{26}C^{13}$		
	$N^{T} = N$		
	Nis symmetric		
	Only S2 is true		
80.	Let $f(x) - 2x^n + \lambda$, $\lambda \in \mathbb{R}$, $n \in \mathbb{N}$ a	and $f(4) = 133, f(5)$	= 255. Then the sum of all the positive
	integer divisors of $(f(3) - f(2))$ i	S	
	1) 60 2) 58	3) 61	4) 59
Key:	1		
Sol:	$f(x) = 2x^n + \lambda \Longrightarrow f(x) = 133 f(5)$) = 255	
	$2(4)^{n} + \lambda = 133 \ 2(5)^{n} + \lambda = 255$	1111.66	
	$2(5)^n - 2(4)^n = 122$		
	$5^n - 4^n = 61 \rightarrow n = 3$		
	$f(3) - f(2) = 2(3)^n - 2(2)^n = 2(27)^n$	(2) - 2(8) = 54 - 38	
	Dividing 1, 2, 19, 38 sum =0	60	
question: answer i	II contains 10 Numerical Value Type questions. Atte	9. If the Answer is in Decimal f answer is from 10.5 and les	rst 5 attempted questions will be considered if more than 5 then round off to the nearest Integer value (Example i, e. If
81.		d R intersect at the	e C with PR as its diameter. The point S. If S lies on the line $2x - ky = 1$
	then k is equal to		nal Institu
		S. Startin	TRU
Key:	3	EUIRANU	
	then k is equal to 3 Equation of circles $(x+3)(x-3)$	a)+(y-2)(y-4)=	= 0
Key: Sol:	3 Equation of circles $(x+3)(x-a)$ $Q(9,10) \Rightarrow a = 13$	a)+(y-2)(y-4)=	= 0
	Equation of circles $(x+3)(x-3)$	a)+(y-2)(y-4)=	= 0
	Equation of circles $(x+3)(x-3)$ Q(9,10) \Rightarrow a = 13	a)+(y-2)(y-4) = 6y-31=0	= 0
	Equation of circles $(x+3)(x-3)$ Q(9,10) \Rightarrow a = 13 equation of circle $x^2 + y^2 - 10x - 3$	a) + $(y-2)(y-4) =$ 6y - 31 = 0 - 7y - 106 = 0(= 0 1)

Sri	Chaitanya IIT Academy, India Jee Mains-2023_25 th Jan_Shift-
	From (1), (2) (x, y) = $\left(\frac{25}{2}, 8\right)$
	$\left(\frac{25}{2}, 8\right) \Longrightarrow 2x - ky = 1 \Longrightarrow 25 - 8k = 1 \Longrightarrow 8k = 24 \Longrightarrow k = 3$
82.	If the shortest distance between the line joining the points $(1, 2, 3)$ and $(2, 3, 4)$ and the
	line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{0}$ is α , then $28\alpha^2$ is equal to
Key:	18
	$L_{i} = \vec{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}\right) + t\left(\hat{i} + j + \hat{k}\right)$
	$L_2 = \vec{r} = (i + 2j + 3k) + 5(2i - j)$
	$\vec{b} \times \vec{d} = \begin{vmatrix} i & j & k \\ 1 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} = i + 2j - 3k$
	$\begin{bmatrix} \vec{a} - \vec{c} \ \vec{b} \ \vec{d} \end{bmatrix} = \begin{vmatrix} 0 & 3 & 1 \\ 1 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} = 0 - 3 (-2) + 1(-3)$
	$S.D = \frac{\left[\vec{a} - \vec{c}. \vec{b} - \vec{d}\right]}{\left \vec{b} \times \vec{d}\right } = \frac{3}{\sqrt{14}}$
	$28a^2 = 28 \cdot \frac{9}{14} = 18$
83.	Let $a \in R$ and let α, β be the roots of the equation $x^2 + 60^{1/4}x + a = 0$ If $\alpha^4 + \beta^4 = -30$ then
	the product of all possible values of a is
Key:	45 OI Giose sentions
Sol:	45 $x^{2} + 60^{1/4}x + a = 0 \Rightarrow \alpha + \beta = -60^{1/4}, \alpha\beta = a$
	$x^{2} + 60^{1/4}x + a = 0 \Longrightarrow \alpha + \beta = -60^{1/4}, \alpha\beta = a$
	$\alpha^2 + \beta^2 + 2\alpha\beta = \sqrt{60}$
	$\alpha^2 + b^2 = \sqrt{60} - 2a$
	$\alpha^4 + \beta^4 + 2\alpha^2\beta^2 = 60 + 40^2 - 4\sqrt{60}a$


$$\Rightarrow -30 + 2a^2 = 60 + 4a^2 - 4\sqrt{60}a$$
$$\Rightarrow 2a^2 - 4\sqrt{60}a + 90 = 0$$

Jee Mains-2023_25th Jan_Shift-11

Page 40

Product of rots = 90/2 = 45

- **84**. A triangle is formed by X-axis, Y-axis and the line 3x + 4y = 60. Then the number of points P(a, b) which lie strictly inside the triangle where as is an integer and b is a multiple of a, is
- Key: 31
- Sol: Required points

Total number of points 31

If m and n respectively are the number of positive and negative values of θ in the interval 85.

 $[-\pi,\pi]$ that satisfy the equation $\cos 2\theta \cos \frac{\theta}{2} = \cos 3\theta \cos \frac{9\theta}{2}$ then mn is equal to

Key: 25

_

Sol

$$\cos 2\theta \cos \frac{\theta}{2} = \cos 3\theta \cos \frac{9\theta}{2}, [-\pi, \pi]$$
$$2\cos 2\theta \cos \frac{\theta}{2} = 2\cos 3\theta \cos \frac{9\theta}{2}$$
$$\cos \frac{5\theta}{2} + \cos \frac{3\theta}{2} = \cos \frac{15\theta}{2} + \cos \frac{3\theta}{2}$$

$$\cos 2\theta \cos \frac{\theta}{2} = 2\cos 3\theta \cos \frac{\theta}{2}$$

$$\cos \frac{2\theta}{2} + \cos \frac{3\theta}{2} = \cos \frac{15\theta}{2} + \cos \frac{3\theta}{2}$$

$$\Rightarrow \frac{15\theta}{2} = 2n\pi \pm \frac{5\theta}{2} \Rightarrow 15\theta = 4n\pi \pm 5\theta \Rightarrow \theta = \frac{n\pi}{5}, \frac{2n\pi}{5}$$

+ve sol =
$$\left\{\frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{4\pi}{5}, \pi\right\}$$

-ve sol = $\left\{-\pi, \frac{-\pi}{5}, \frac{-2\pi}{5}, \frac{-3\pi}{5}, -\frac{4\pi}{5}\right\}$ mn = 25

	i Chaitanya IIT Academy, India			Jee Mains-2023_25th Jan_Shift-1			
88.	Suppose Anil's mother wants to give 5 whole fruits to Anil from a basket of 7 red apples						
	5 white apples and 8 oranges. If in the selected 5 fruits at least 2 oranges, at least one red						
	apple and at least one while apple must be given then the number of ways. Anils mother						
	can offer 5 fruits to anile is						
Key:							
Sol:	case	7 red applies	5 white apples	8 orai	nges Selection of 5 fruits		
	Ι	1	1	3	$^{7}C_{1}.^{5}C_{1}.^{8}C_{3}$		
	Π	1	2	2	$^{7}C_{1}.^{5}C_{2}.^{8}C_{3}$		
	III	2	- 1	2	$^{7}C_{2}.^{5}C_{1}.^{8}C_{3}$		
		-	1	2	$c_2. c_1. c_3$		
	Total number of ways = = ${}^{7C}C_{1}.{}^{5}C_{1}.{}^{8}C_{3} + {}^{7}C_{1}.{}^{5}C_{2}.{}^{8}C_{3} + {}^{7}C_{2}.{}^{5}C_{1}.{}^{8}C_{3}$						
	= 7.5.56 + 7.10.28 + 21.5.28						
	= 7.5.28(2+2+3)						
	$= 7 \times 5 \times 28 \times 7 = 6860$						
89 .	For the two positive a, b, if a, b and $1/18$ are in a geometric progression while $1/a$, 10 and						
	1/b are in an arithmetic progression then $16a + 12b$ is equal to						
Key:							
Sol:	a, b, $\frac{1}{18}$ are in GP \Rightarrow b ² = $\frac{a}{18}$ \Rightarrow a = 18b ² (1)						
	$\frac{1}{a}$, 10, $\frac{1}{b}$ are in AP $\Rightarrow \frac{1}{a} + \frac{1}{b} = 20 \Rightarrow \frac{1}{18b^2} + \frac{1}{b} = 20$						
	$\Rightarrow 360 b^2 - 18b - 0 \Rightarrow (12b - 1)(30b + 1) = 0(-30, 12)$						
	$\Rightarrow b = \frac{1}{12}, b = \frac{1}{30} (b > 0)$						
	From 1 $a = 18 \cdot \frac{1}{144} = \frac{1}{8} \implies 16a + 12b = 2 + 1 = 3$ The remainder when $(2023)^{2023}$ is divided by 35 is						
90.	The remainder when $(2023)^{2023}$ is divided by 35 is						
Key:	: 7 Educational Int						
Sol:	$2023 = -7 \pmod{35}$						
	$(2023)^2 = 14 \pmod{35}$						
	$(2023)^4 = -14 \pmod{35}$						
	$(2023)^{16} = -14 \pmod{35}$						
	$(2023)^{202}$	$^{20} = -14 \pmod{35}$					
Jee Ma	uins-2023_25 ^t	th Jan_Shift-11			Page 43		